Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

نویسندگان

  • Haroon Rashid
  • Ashok K. Turuk
چکیده

Localization in wireless sensor networks (WSNs) not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization (MCL), which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs (DRLMSN). In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bézout’s theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu [1].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node

Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...

متن کامل

Dead reckoning localisation technique for mobile wireless sensor networks

Localization in wireless sensor networks (WSNs) not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in ...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

Demo: Dead Reckoning for Monte Carlo Localization in Low Seed Density Scenarios

In this work we present a dead reckoning approach called Sensor-Assisted Monte Carlo Localization (SA-MCL) to account for low seed density situations in localization for mobile sensor networks. Our approach is based on using additional sensor information from a standard IMU device. It is evaluated in a mobile sensor network testbed based on radiocontrolled cars. The demo complements our full pa...

متن کامل

Indoor Localization Techniques based on Wireless Sensor Networks

Indoor localization is one of the most important problems in intelligent service robots, and home and office automation. For mobile robot navigation usually vision-based image processing techniques and dead-reckoning techniques based on inertial navigation systems have been used. These traditional technologies however have revealed many problems in actual applications. Vision-based image proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1504.06797  شماره 

صفحات  -

تاریخ انتشار 2015